Trends in the treatment of dermatophytosis

Amalia del Palacio, Margarita Garau, Alba Gonzalez-Escalada and Mª Teresa Calvo

Department of Microbiology, Hospital Universitario “12 de Octubre”, Madrid, Spain

Summary

The aim of this paper is to give an updated view of treatment schedules discussing topical and systemic antifungal therapy of dermatophytosis with current available antifungals.

Key words

Dermatophytosis, Topical treatment, Systemic treatment

According to WHO (World Health Organisation), the dermatophyte fungi are ubiquitous and form three genera: Epidermophyton, Trichophyton and Microsporum [1]. They comprise about 40 different species, and have common characteristics:

1. Close taxonomic relationships
2. Keratinolytic properties (they all have the ability to invade and digest the keratin as saprophytes “in vitro” and parasites “in vivo”, producing lesions in the living host).
3. Occurrence as etiologic agents of infectious diseases of man and/or animals (dermatophytoises are mycoses of man and animals caused by dermatophytes).

In man they invade hairs, nails and skin (they are found in the stratum corneum - the keratinized outer layer - and within the hair follicle, in the nail folds and subungually in the nail bed). All these are extensions of the stratum corneum.

Dermatophytes may be classified according to the genera, the ecology and patterns of infection [1]. The clinical picture forms distinct entities grouped according to the infected site, namely tinea capitis (Figure 1), tinea barbae, tinea favosa, tinea corporis (Figures 2 and 3), tinea imbricata, tinea cruris, tinea pedis (Figure 4), tinea manuum and tinea unguium (Figure 5)[1,2].

Presumptive diagnosis of dermatophytosis on clinical grounds should always be confirmed by direct microscopy (Figures 6 and 7) and culture [2]. The success of mycological examination is dependent on the selection of suitable specimens.

The dermatophyte fungi are ubiquitous and no geographical area nor any group of people is spared by these organisms. Since dermatophytosis is not notifiable by law, the real prevalence and incidence is unknown. However, they have a worldwide distribution [3], although same species are restricted to certain geographical areas [3,4].

The management of dermatophytosis begins with topical agents. These agents should penetrate the skin and remain there in order to suppress the fungus.

In the last 50 years numerous drugs have been introduced for the treatment of superficial infections. The choice of treatment is determined by the site and extent of the infection, the species involved as well as by the efficacy and safety profile, and kinetics of the drugs available. For localised non-extensive lesions caused by dermatophytes topical therapies with an imidazole, allylamine, tolnaftate, morpholine derivatives, etc is generally used.

For tinea unguium, scalp ringworm, extensive dermatophytosis, or skin lesions with folliculitis, systemic antifungal treatment is necessary.

The rational treatment of dermatophytosis requires mycological confirmation (KOH and culture); in other words the clinician should confirm a presumptive clinical diagnosis of dermatophyte infection before the start of treatment. Since spontaneous healing of dermatophytosis is uncommon, treatment implementation is necessary.

Dermatophytes are located in the stratum corneum within the keratinocytes. The signs and symptoms that appear in infected individuals are due to acute and chronic inflammatory changes that appear in the dermis. For these reasons, antifungal agents should have the ability to penetrate the stratum corneum cells to be efficient when applied topically. The vast majority of antifungals are fungistatic with the concentrations achieved in the skin when applied topically; the growth of dermatophytes is delayed and these are shed with the skin renewal and healing is achieved. The antifungal agents and the components incorporated on the vehicle should be non-irritant and well tolerated.

The vast majority of antifungals are applied twice daily, although the latest ones introduced are applied only once daily. Attention is currently being directed towards shortening the course of therapy and applying the medication once daily in an attempt to increase patient compliance and it is generally advisable to continue treatment for two weeks once clinical cure is achieved. Skin lesions located on face, trunk and limbs usually require two or three weeks of treatment. Inflammatory dermatophyte infections of the feet should be treated for four or six weeks and hyperkeratotic lesions of palms and soles are best treated with oral antifungals since they are usually unresponsive to topical antifungals.
Topical treatment of dermatophytosis is possible with non-extensive lesions, the application of medication should be done rubbing it in gently in the affected skin area and should exceed (surpass) one cm. of healthy skin. It is important that the patient follows the application of treatment with the schedule recommended by the doctor.

Oral treatment is indicated in widespread skin lesions, *tinea capitis, tinea barbae, tinea unguium*, in skin lesions with folliculitis, and when either there is no response to topical treatment or tolerance is not adequate.
Oral antifungal agents for the treatment of dermatophytosis

The oral compounds with the potential for treating dermatophytosis are shown in table 1.

Table 1. Oral antifungal agents for the treatment of dermatophytosis.

<table>
<thead>
<tr>
<th>Class</th>
<th>Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscellaneous</td>
<td>Griseofulvin</td>
</tr>
<tr>
<td>Azoles</td>
<td>Ketoconazole</td>
</tr>
<tr>
<td>Triazoles</td>
<td>Itraconazole</td>
</tr>
<tr>
<td></td>
<td>Fluconazole</td>
</tr>
<tr>
<td></td>
<td>Voriconazole</td>
</tr>
<tr>
<td>Allylamines</td>
<td>Terbinafine</td>
</tr>
</tbody>
</table>

Griseofulvin is still currently the gold standard for treatment of dermatophytosis (excluding *tinea unguium*) since being introduced clinically in the sixties following the observations of Gentles [5]. This antifungal, produced by a *Penicillium* sp., has successfully eradicated dermatophyte infections. This drug has been widely used both in adults and children and has an excellent safety profile.

Absorption of griseofulvin is poor in the gastrointestinal tract and it is influenced by particle size, dietary fat intake and the dissolution rate of the various preparations. Micronized and ultramicronized formulations are better absorbed [6]. Overall bioavailability is variable, ranging from less than 25% to approximately 70% of the administered dose [7]. In skin the highest concentration is achieved in the outermost stratum corneum. Non-protein-bound drug is carried in the extracellular fluid, in sweat, and through transepidermal fluid loss [7]. Several investigations have shown that the concentration of griseofulvin in the skin is sensitive to the rate of eccrine sweat production, although in diseased skin the participation of sweat is not clear [8]. Once griseofulvin reaches the stratum corneum, reversible protein binding and lipid solubility result in its concentration in the horny layer and when administration is discontinued the drug is rapidly cleared.

Griseofulvin is eliminated as different metabolites in the urine and faeces and requires a daily dosing. Once treatment is discontinued, griseofulvin is rapidly cleared from the site of infection and as a consequence, treatment should be maintained until a clinical cure is apparent [7].

Dosages of 10 mg/kg/day microsize are widely used, but 20 to 30 mg/kg/day may be required, particularly in *tinea capitis*. Resistance has not been documented clinically.

When the drug is taken with meals, side effects are generally uncommon. Headache is the most common, but it usually disappears if treatment is discontinued. Other side effects that occur infrequently involve the skin, the gastrointestinal, nervous, genitourinary and musculoskeletal systems.

No new oral antifungal agents appeared until ketoconazole was introduced in 1980. This drug was an advance in the treatment of mycoses, but nowadays there are many concerns about its use, basically due to a significant incidence of idiosyncratic hepatic toxicity [7,9], with an estimated incidence as high as 1 in 3000 patients. Other serious side effects involve the central nervous system or endocrine system (adrenal androgens and glucocorticosteroids) [7].

Itraconazole is a triazole agent, poorly water-soluble and whose bioavailability improves when the drug is taken with a fatty meal [10]. Oral absorption is dose-dependent [10-12]. It is >99.8% protein bound in plasma (albumin), but some binding is also associated with red blood cells. It is extremely lipophilic and achieves high concentrations in fat, omentum, skin/nails and vaginal/cervical tissues [10]. Accumulation in skin is slow and antifungal therapeutically active high concentrations persist up to a month after the end of treatment [13]. The concentrations in skin exceed 3 to 10 times those found in plasma [13]. Itraconazole has a terminal elimination half-life of 20 to 60 hours, suggesting that steady state concentrations are achieved after 2 weeks of continuous treatment. Approximately 65% of the compound is eliminated in faeces and 35% in urine, in the form of diverse metabolites. No dosage adjustment is required for hepatic or renal function.

Itraconazole appears as a safe drug [10], the frequency of side effects appearing to depend on the duration of therapy and occurring in 7% to 12% of patients [10]. Nausea, vomiting and headache are the most frequent side effects, and liver function abnormalities occur in <1% of patients. Itraconazole is available in liquid and capsule form. The solution contains cyclodextrin, which raises carcinogenetic concerns, since it has been shown to cause pancreatic adenocarcinomas in rats at human exposure doses. However, at present the significance of this is uncertain. In any case, the cyclodextrin formulation increases markedly the absorption of itraconazole, may be taken while fasting and there appears to be no interference by H2 or proton pump blockers [14]. One distinct advantage of this liquid formulation is its potential for topical therapy of mucosal candidiasis, but a disadvantage is that it has an unpleasant taste. The upper dose limit for liquid itraconazole has not been determined. Table 2 shows the bioavailability of itraconazole capsules and solution. At present liquid itraconazole is being developed as a parenteral agent and studies are in progress in several countries for the management of deep-seated mycoses in patients who have had bone marrow transplants.

Table 2. Relative bioavailability of itraconazole capsules and solution determined by measuring serum concentrations. Data from Janssen Pharmaceuticals.

<table>
<thead>
<tr>
<th></th>
<th>Capsule</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>With meals</td>
<td>100%</td>
<td>125%</td>
</tr>
<tr>
<td>Fasting</td>
<td>60%</td>
<td>165%</td>
</tr>
</tbody>
</table>

Fluconazole is a triazole that is water-soluble and extremely well absorbed [12]. Its high bioavailability appears unaffected by food intake, pH or antacids [11]. There is minimal protein binding, a property that precludes many adverse drug-drug interactions. Fluconazole is widely distributed to body tissues, including cerebrospinal fluid [11,12]. It has a long half-life, approximately 22 to 30 hours in adults and steady state concentrations are reached 6 to 10 days after the start of treatment [12]. Most of the drug is excreted unchanged in the urine since it undergoes no hepatic metabolism. It is eliminated more slowly from skin, and therefore clinical cures may be achieved after the withdrawal of treatment. It requires dosage adjustment in patients with impaired renal function. Side effects occur in ~16% of patients [11,12]. Nausea, vomiting and liver test abnormalities are most common side effects.
Voriconazole is a third generation triazole under preclinical development [15]. It has a wide spectrum of activity that includes yeasts (including those usually resistant to fluconazole such as Candida glabrata, C. krusei and C. lusitaniae). It is also active in vitro against Aspergillus spp, Cryptococcus neoformans, dimorphic fungi and different emerging pathogens such as Fusarium spp., Acremonium spp., Scedosporium spp., and Trichosporon spp. [15,16]. Pharmacokinetics show bioavailability up to 90% after oral dosing and has widespread distribution throughout the body. Plasma protein binding in humans is approximately 65%, 78%-88% of which is metabolised and appears in urine, and less than 5% remains unchanged [17].

From a dermatological point of view it is interesting to note that voriconazole is active in vitro against dermatophytes and Malassezia spp. [18,19]. There are no current published data on the pharmacokinetics of voriconazole in skin, sebum, hair and nails. This in vitro activity against dermatophytes is promising but it remains to be seen if these preliminary in vitro data will indeed be predictive of clinical efficacy in dermatophyte infections.

At present, voriconazole is available as an oral formulation and an intravenous cycloextrin suspension. Oral absorption seems to be impaired by food intake [15]. Voriconazole interacts with cyclosporine and warfarine and plasma levels drop when rifampicin, rifabutin and phenotoin are administered simultaneously [15,16].

Terbinafine is a fungicidal allylamine that is absorbed from the gastrointestinal tract, with a bioavailability of 70-80%, reaching peak plasma concentration in two hours approximately [20]. Terbinafine binds strongly to plasma proteins and about 8% binds to blood cells [12], achieving high concentrations in skin and skin structures [21,22].

Almost 80% of the administered dose is eliminated as metabolites in urine. Dosage adjustment is required in patients with severe hepatic or renal dysfunction, or both [12,20]. When treatment with terbinafine ceases the concentration in stratum corneum remains high (0.1 μg/ml) for 8 weeks and enables the use of short courses of treatment. The incidence of adverse effects with terbinafine therapy is approximately 10% [12]. Most of them appear during the first few weeks of treatment and tend to disappear with continued therapy.

Table 3 shows the most relevant characteristics of oral antifungal used for the management of dermatophyte infections.

Several recently published reports discuss safety considerations with the commonly used oral antifungal agents [6,23-29].

Table 4 which is adapted from reference 30 shows the most common drug interactions with newly introduced antifungals. As shown in this table, terbinafine has rare interactions when compared with fluconazole and itraconazole.

Table 3. Characteristics of oral antifungal agents for the treatment of dermatophyte infections.

<table>
<thead>
<tr>
<th>Keratin binding</th>
<th>Excretion by sweat</th>
<th>Grease affinity</th>
<th>Mechanism of action</th>
<th>Fungicidal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keratin binding</td>
<td>Excretion by sweat</td>
<td>Grease affinity</td>
<td>Mechanism of action</td>
<td>Fungicidal</td>
</tr>
<tr>
<td>Griseofulvin</td>
<td>Ketoconazole</td>
<td>Fluconazole</td>
<td>Itraconazole</td>
<td>Voriconazole</td>
</tr>
<tr>
<td>low</td>
<td>high</td>
<td>low</td>
<td>disrupts spindle/microtubules</td>
<td>no</td>
</tr>
<tr>
<td>Excretion by sweat</td>
<td>low</td>
<td>low</td>
<td>inhibits 14α-demethylation of lanosterol</td>
<td>no</td>
</tr>
<tr>
<td>Grease affinity</td>
<td></td>
<td>high</td>
<td>inhibits 14α-demethylation of lanosterol</td>
<td>no</td>
</tr>
<tr>
<td>Mechanism of action</td>
<td></td>
<td>high</td>
<td>inhibits fungal cytochrome P-450 dependent 14α-lanosterol demethylation</td>
<td>no</td>
</tr>
</tbody>
</table>

Table 4. Triazoles and terbinafine interactions (Adapted from [30]).

<table>
<thead>
<tr>
<th>Drugs that increase antifungal levels</th>
<th>Drugs that decrease antifungal levels</th>
<th>Drugs whose levels may be increased by antifungal agents</th>
<th>Drugs whose levels may be decreased by antifungal agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terbinafine</td>
<td>Fluconazole</td>
<td>Itraconazole</td>
<td>Cimetidine</td>
</tr>
<tr>
<td>Drugs whose levels may be increased by antifungal agents</td>
<td>Terbinafine</td>
<td>Fluconazole</td>
<td>Warfarine</td>
</tr>
<tr>
<td>None</td>
<td>Warfarine</td>
<td>Oral antidiabetics</td>
<td>Ciclosporine</td>
</tr>
<tr>
<td>Oral contraceptives</td>
<td>Warfarine</td>
<td>Phentinoin</td>
<td>Triazolam</td>
</tr>
<tr>
<td>Antipirine</td>
<td>Warfarine</td>
<td>Cimetidine</td>
<td>Felodipine</td>
</tr>
<tr>
<td>Oral contraceptives</td>
<td>Warfarine</td>
<td>Oral antidiabetics</td>
<td>Midazolam</td>
</tr>
<tr>
<td>Drugs whose levels may be decreased by antifungal agents</td>
<td>None</td>
<td>Warfarine</td>
<td>Triazolam</td>
</tr>
<tr>
<td>None</td>
<td>Oral contraceptives</td>
<td>Warfarine</td>
<td>Felodipine</td>
</tr>
</tbody>
</table>

Topical antifungal treatment of dermatophytosis

The topical compounds with potential utility for treating dermatophytosis are shown in table 5 and table 6 shows the indications for topical treatment of dermatophyte infections.

The doctor who prescribes treatment of dermatophytosis should choose a given antifungal or treatment schedule considering different factors such as kinetics and levels achieved in stratum corneum, clinically proven efficacy, risk/benefit relationship, duration of treatment, cost. Percentage recurrence in long term assessment, individual preference of patients, species of dermatophyte responsible for the infection and underlying conditions of the patient [7,11,12,23,31,32].

Currently, of all the miscellaneous compounds shown in Table 5, only ciclopiroxalamine is widely used. A new topical formulation of griseofulvin was developed a few years ago, and although it is not widely used it has proved to be useful [33]. Most of these miscellaneous compounds were used in the sixties. The first clinical trials showed that they were superior when compared with haloprogin and Whitfield’s ointment, although the latter has the distinct advantage of
An interesting feature of topical antifungal preparations is that they possess inherent anti-inflammatory activity, leading to rapid symptomatic relief while also providing mycological cure. Rosen et al. [34] using different commercially available antifungal preparations in vivo in humans have shown that the allylamine preparations and ciclopiroxalamine were the most anti-inflammatory and ketoconazole had intermediate activity under experimental conditions used by the authors. These agents were superior to oxiconazole, econazole and even 2.5% hydrocortisone. The exact mechanism of this anti-inflammatory activity remains uncertain at present.

The last topical compound introduced in Japan in 1992 and in the U.S.A. in 1997 is butenafine [35-39]. The compound is expected to be launched in 1999 in the European Community. Butenafine binds strongly to keratin and has an in vitro spectrum that covers both dermatophytes and Candida albicans [35-39]. An important feature of butenafine is that the healing rate increases significantly after treatment is stopped. Butenafine is a fungicidal bencilamine derivative that blocks squalenepoxidase.

Treatment schedules

Dermatophyte infections require different treatment schedules depending on the infected site and species causing ringworm. As has been previously stated, topical therapies are used for localised or mild infections and oral therapies are used for systemic treatment. As adjunctive therapy, the use of systemic antifungals can reduce cost and increase compliance. In cases of kerion, oral glucocorticoids may be given in an attempt to reduce scarring. Usually 1 mg/kg/day o.d. of prednisone is given for two weeks.

Terbinafine has been registered worldwide since 1991 [42]. In Europe since 1996 terbinafine has been licensed in several countries for the treatment of children, and most published studies of its use in the paediatric population have concentrated essentially on *tinea capitis* [43]. The dominant dermatophyte species in these studies were *Trichophyton violaceum* and *T. tonsurans*, for which there have been favourable clinical and mycological responses (93%) after the administration of terbinafine for 4 weeks at a daily dose dependent on body weight (62.5 mg for less than 20 kg; 125 mg for 20-40 kg; 250 mg for more than 40 kg).

In the authors’ clinical experience [44] and the published reports of others [45-47] there seems to be a lack of terbinafine efficacy in *M. canis* tinea capitis. This lack of terbinafine efficacy in *M. canis* seems to be neither native [48] nor secondary post-treatment resistance [47]. Other *Microsporum* spp. such as *M. audouinii* and *M. ferrugineum* seem also to be unresponsive clinically to terbinafine [49,50].

Thus, since *M. canis* is the predominant pathogen of scalp ringworm in Europe, North Africa and Middle East [51] we would not, on the basis of our experience and that of others [44-47,49,50,52], advocate the treatment of *Microsporum tinea capitis* with terbinafine. Further controlled studies will be required to confirm this. For young children terbinafine tablets may be split and hidden in food such a peanut butter. Crushing is not recommended because the formulation is not palatable.

Itraconazole is not yet licensed for the treatment of children and in the authors’ experience has been found to match griseofulvin in therapeutic efficacy in *M. canis* tinea capitis in daily doses of 100 mg for 6 weeks [53]. Consequently itraconazole seems a reasonable second choice agent for children either not responding to adequate doses of griseofulvin or else showing signs of intolerance to this drug.

Itraconazole dosing recommendations vary. Elewsky [54] recommended 100 mg/day for patients weighting >60 lbs and 100 mg every other day for those weighing <60 lbs. Itraconazole is available in capsule form and liquid formulation which contains cyclodextrin, and this last element raises concerns for its use in children because it has been shown to cause pancreatic adenocarcinoma in rats at human doses. Even though the significance of this is uncertain, its use in children still raises

Table 5. Topical antifungal agents for the treatment of dermatophytosis (modified from [11]).

<table>
<thead>
<tr>
<th>Agent</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morpholine derivatives</td>
<td></td>
</tr>
<tr>
<td>Amorolfine</td>
<td></td>
</tr>
<tr>
<td>Allylamines and benzylamine derivatives</td>
<td></td>
</tr>
<tr>
<td>Naftine</td>
<td></td>
</tr>
<tr>
<td>Terbinafine</td>
<td></td>
</tr>
<tr>
<td>Butenafine</td>
<td></td>
</tr>
<tr>
<td>Azole derivatives</td>
<td></td>
</tr>
<tr>
<td>Bifonazole, butoconazole, clotrimazole, croconazole, eberconazole, econazole, terconazole, flutrimazole, isoconazole, ketoconazole, miconazole, omoconazole, oxiconazole, sertaconazole, sulconazole, terconazole, toconazole.</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous compounds</td>
<td></td>
</tr>
<tr>
<td>Ciclopriroxolamine, griseofulvin, haloprogin, tolnaftate, Whitfield’s ointment, undecillicnic acid.</td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Indications of topical treatment for dermatophyte infections.

- Non widespread limited lesions.
- Cases with interactions with oral antifungals.
- Patients non-compliant to systemic treatment.
- As adjunctive for systemic treatment.
- Prophylactic use to avoid recurrences after oral treatment.
- Patients in whom oral treatment is contraindicated.
- Pregnant or breastfeeding women.
- Attempts to shorten, improve or limit systemic antifungal treatment.

lower cost and the disadvantage of being an irritative agent. Allergic contact dermatitis with imidazoles is rare. Irritant effects may occur with any of them.

25 mg/kg/day for 6 to 8 weeks, and some patients require more prolonged therapy, particularly with *M. canis* [41].

Prolonged therapy increases the risk of non-compliance and some treatment failures may represent poor compliance [41]. Single-dose therapy (2 to 3 g) and intermittent dose schedules (25 mg/kg/twice a week) have also been used, particularly in the third world, in an attempt to reduce cost and increase compliance.

In cases of kerion, oral glucocorticoids may be given in an attempt to reduce scarring. Usually 1 mg/kg/day o.d. of prednisone is given for two weeks.
carcinogenetic concerns. The capsule formulation may be opened and mixed with food. Elewsky [55] has used itraconazole in 120 children with T. tonsurans tinea capitis unresponsive to griseofulvin, achieving in all of them a clinical and mycological cure. Gupta et al. [56-58] have investigated the efficacy of pulse therapy with itraconazole and terbinafine in children with T. tonsurans infections reporting 100% cure rate when 1 to 3 pulses of itraconazole were used and 92% cure rate with terbinafine. Gupta et al. note that the pulse-dosing format is a reasonable option, given pharmacokinetics of both drugs. They also state that pulse regimes allowed the physician to tailor therapy to individual patient response.

Fluconazole is available in both liquid and tablet form. Preliminary results are currently available in T. tonsurans tinea capitis [59,60], and there is no standardized dosing recommendation.

Finally a recent trial comparing short course terbinafine and itraconazole therapy has shown that a two week treatment with either drug provides cure rates in T. tonsurans infections of 64% and 59% respectively [61]. Controlled trials are warranted to establish the efficacy of the newer antifungal agents compared with griseofulvin, which is still the best. Safety and cost should also be considered as well as the risk and benefits of the new antifungal agents.

Recommendations for school attendance

The issue of keeping children off school remains controversial. Quoting Hay and Moore [62] the value of this measure in limiting spread has to be weighed carefully against its possible effect on compliance with surveillance and treatment, and this issue should be considered in conjunction with the local situation. In an outbreak in London, Hay [63] adopted the policy of advising treatment for all infected children with griseofulvin plus selenium sulphide or ketoconazole shampoo, to allow them to attend school once on treatment and to screen classes with scalp brushes if there were more than two children infected. Hay [62] maintains that with zoophilic T. tonsurans tinea capitis and griseofulvin, achieving in all of them a clinical and mycological cure. Gupta et al. [56-58] have investigated the efficacy of pulse therapy with itraconazole and terbinafine in children with T. tonsurans infections reporting 100% cure rate when 1 to 3 pulses of itraconazole were used and 92% cure rate with terbinafine. Gupta et al. note that the pulse-dosing format is a reasonable option, given pharmacokinetics of both drugs. They also state that pulse regimes allowed the physician to tailor therapy to individual patient response.

Fluconazole is available in both liquid and tablet form. Preliminary results are currently available in T. tonsurans tinea capitis [59,60], and there is no standardized dosing recommendation.

Finally a recent trial comparing short course terbinafine and itraconazole therapy has shown that a two week treatment with either drug provides cure rates in T. tonsurans infections of 64% and 59% respectively [61]. Controlled trials are warranted to establish the efficacy of the newer antifungal agents compared with griseofulvin, which is still the best. Safety and cost should also be considered as well as the risk and benefits of the new antifungal agents.

Recommendations for school attendance

The issue of keeping children off school remains controversial. Quoting Hay and Moore [62] the value of this measure in limiting spread has to be weighed carefully against its possible effect on compliance with surveillance and treatment, and this issue should be considered in conjunction with the local situation. In an outbreak in London, Hay [63] adopted the policy of advising treatment for all infected children with griseofulvin plus selenium sulphide or ketoconazole shampoo, to allow them to attend school once on treatment and to screen classes with scalp brushes if there were more than two children infected. Hay [62] maintains that with zoophilic infections such as T. tonsurans tinea capitis and griseofulvin, achieving in all of them a clinical and mycological cure. Gupta et al. [56-58] have investigated the efficacy of pulse therapy with itraconazole and terbinafine in children with T. tonsurans infections reporting 100% cure rate when 1 to 3 pulses of itraconazole were used and 92% cure rate with terbinafine. Gupta et al. note that the pulse-dosing format is a reasonable option, given pharmacokinetics of both drugs. They also state that pulse regimes allowed the physician to tailor therapy to individual patient response.

Fluconazole is available in both liquid and tablet form. Preliminary results are currently available in T. tonsurans tinea capitis [59,60], and there is no standardized dosing recommendation.

Finally a recent trial comparing short course terbinafine and itraconazole therapy has shown that a two week treatment with either drug provides cure rates in T. tonsurans infections of 64% and 59% respectively [61]. Controlled trials are warranted to establish the efficacy of the newer antifungal agents compared with griseofulvin, which is still the best. Safety and cost should also be considered as well as the risk and benefits of the new antifungal agents.

Should asymptomatic scalp carriers be treated?

It is a well-known fact that dermatophytes can be cultured from the scalp of asymptomatic individuals following oral treatment [44,62-65]. These carriers also appeared in the classes where index cases occur and also in household members [62-66]. Carriage may persist for as long as 8 months [44,63,66]. Carriers are a potential source of infection and play a part in the spread and persistence of tinea capitis in the community. According to Greer [68] and in the authors’ clinical experience [64,65] quantitative scalp cultures should be done and, in cases with massive colony counts (Figure 8), topical treatment with ketoconazole shampoo should be implemented as well as in cases of carriage of T. tonsurans – even with low colony counts – due to the highly infectious nature of these species (Figure 9). Treatment with ketoconazole shampoo has the advantage of depositing itself on the scalp surface and adherence after rinsing, but its role in the eradication of asymptomatic carriage has not yet been addressed [66].

One question that still needs to be answered is the way in which viable spores may be removed from the environment, household and classrooms.

Tinea unguium

Onychomycosis, a fungal infection of the nail, is referred to as tinea unguium when caused by dermatophytes. Onychomycoses are almost exclusively an adult malady (see Table 7). They require treatment since spontaneous cure is not possible (see Table 8). They represent a therapeutic challenge because they are a chronic condition and recalcitrant to treatment and for the dermatologist they represent the most difficult and problematic therapeutic problem of the superficial fungal infections.

Topical therapy for tinea unguium has poor results, except in superficial white onychomycosis due to dermatophytes, where it may be effective. Topical agents – 28% tioconazole, ciclopyroxolamine, amorolfine nail paint, bifonazole 1% in 40% urea cream under occlusive dressing – produce a low cure rate and remission [69,70]. Topical antifungals actually tend to be used in conjunction with oral antifungals, improving the clinical and mycological results of the latter [69-71].

Amorolfine is interesting because it is synergistic in vitro and in vivo in animal models when combined with oral antifungals (ketoconazole, itraconazole, terconazole and griseofulvin) [72]. This has also been shown in some clinical trials in patients [72].

Either surgical avulsion of nails or clinical removal using different preparations [69-71,73-76] combined with topical and oral antifungal agents, may either increase the cure rate of dermatophyte nail infections or shorten oral treatment.

Griseofulvin was the only oral antifungal available for the treatment of tinea unguium before the azole and...
allylamines were introduced. It had several drawbacks such as the need for long treatment courses (6 and 18 months for fingernails and toenails respectively), low clinical cure rates (less than 30% response) and high relapse rates (more than 40%) [69,70,77].

The new antifungal agents (itraconazole, fluconazole and terbinafine) possess pharmacokinetic characteristics and efficacy rates that have replaced griseofulvin for the treatment of fungal nail disorders. However, the treatment of onychomycosis is difficult and there is a high incidence of treatment failures and relapses. In a recent report, Roberts and Evans [78] highlight a phenomenon for which they have coined the term “subungual dermatothyoma”. It consists of a hyperkeratotic mass located in toenails. This mass does not adhere to the nail plate or the nail bed and can be readily removed. The histology of this mass shows a clump of dermatophyte hyphae. The consequence of this is that antifungal drug penetration is difficult and impaired and treatment measures should include podiatric removal of the lesion in order to improve drug penetration at the site of infection.

Both itraconazole and terbinafine incorporate in the nails and persist unchanged at a therapeutic level for at least six months after discontinuation of therapy when schedules of 12 weeks of treatment are used [69-71]. Either continuous therapy with itraconazole may be used (200 mg o.d. for three months) or pulse therapy (200 mg bid per month for three or four consecutive months) [79]. With this schedule, at the assessment nine months after treatment, 35% of patients achieved a complete clinical cure that persisted two years later [79]. An interesting conclusion of this report is that patients that have a small residual lesion of their nails nine months after treatment will have relapsed when assessed two years later and therefore the clinical criteria that should be used to assess the efficacy of itraconazole should be a total clinical cure nine months post-treatment [79]. Another report of Svejgaard et al. [80] gives a 40% clinical cure rate using continuous itraconazole for three months and if three additional months of itraconazole are administered, the clinical and mycological efficacy does not increase.

Terbinafine schedules used are 250 mg daily given for six weeks for fingernails and 12 weeks for toenails.

A recent paper on a pharmacokinetic comparison of continuous and intermittent pulse itraconazole dosing schedules has two conclusions: intermittent therapy resulted in higher maximum itraconazole plasma concentrations but lower drug exposure, and hence lower itraconazole nail concentrations, than continuous therapy [81]. However, the intermittent schedule was not associated with a lower cure rate, which indicated that concentration of itraconazole in the nail remained within the therapeutic range. The total itraconazole dose given in pulse therapy is half that given in the continuous schedule, and this reduction in total drug intake may be beneficial in reducing any side effects and improving cost-effectiveness as well as in determining patients preference for treatment schedules [82,83].

Fingernail infections may be treated with 250 mg/day of terbinafine for 6 weeks, whilst toenails will require 12 weeks of therapy with the same dose. Using this regime 60% of fingernails and 40% of toenails achieved a clinical cure [84].

One double-blind study comparing the efficacy of continuous treatment with terbinafine and itraconazole in onychomycosis showed little difference in the clinical cure rate: 38% and 40% respectively [85].

Evans et al. [86] have shown in another comparative study that terbinafine 250 mg a day over 12 or 16 weeks produces better cure rates than intermittent itraconazole given over the same period. At week 72 the clinical cure was 54% (terbinafine 12 weeks), 60% (terbinafine 16 weeks) and 32% for itraconazole (three pulses and four pulses).

Fluconazole penetrates the nails through the matrix and nail bed and persists after twice-weekly doses for up to 6 months in toenails [87] and fingernails [88].

In a study of fingernail distal subungual onychomycosis with once-weekly doses of fluconazole (150, 300 or 450 mg) for 2-9 months, there was a clinical response (cures + improvements) in 79%, 90% and 92% respectively [89].

In another study using 450 mg weekly, for the same indication, the clinical response (cures and improvements) was 14%, 23% and 37% when fluconazole was used for 4, 6 and 9 months respectively [90].

So far there have been no comparative studies published with fluconazole and more experience is needed. It is important to consider the pharmacoeconomic

Table 7. Clinical forms of onychomycosis.

<table>
<thead>
<tr>
<th>Form of Onychomycosis</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Proximal subungual onychomycosis (PSO):</td>
<td>Candida, rarely dermatophytes, AIDS, recurrences of onychomycosis previously healed.</td>
</tr>
<tr>
<td>3. Distal and lateral subungual onychomycosis (DLSO):</td>
<td>Dermatophytes (typical), Hendersonula, Scytalidium, Scopulariopsis brevicaulis.</td>
</tr>
<tr>
<td>4. Distrophic onychomycosis (DO):</td>
<td>Final stage of dermatophytes and chronic mucocutaneous candidosis.</td>
</tr>
</tbody>
</table>

Table 8. Reasons for treating onychomycosis.

- Spontaneous clinical cure is impossible.
- Without treatment onychomycosis worsens and spreads to other nails.
- They represent a fungal infection reservoir (important for epidemiological reasons for the community and for individuals with moccasin tinea pedis).
- Onychomycosis due to mycelial fungi (Fusarium spp) is a risk in immunocompromised patients and may be the point of entry of disseminated infections.
- They may facilitate episodes of cellulitis and thrombophlebitis.
- They may induce a Koebner response in patients with either lichen or psoriasis.
- In diabetic patients preexisting problems may worsen.
- They impair quality of life in elderly patients.
- A wide range of antifungal treatments are available at present.
costs of oral antifungals [91] and the individual preference of the different treatment schedules by the patients [83].

Table 9 shows some of the factors important in choosing different treatment schedules.

Tinea cruris

Oclusion and moisture should be avoided. This condition occurs most commonly in men and is the second most frequent dermatophytosis. In most cases, *tinea cruris* can be managed with topical treatment, but long established *T. rubrum* infections or cases in which there is follicular involvement require systemic treatment [92-98]. Relapses are more common with griseofulvin. Topical steroids are not recommended. Topical agents have a soothing effect, which will ease the local symptoms.

Butenafine is one of the latest topical antifungals introduced, and in *tinea cruris* with two weeks of treatment a cure rate around 70% may be expected [38]. Fluconazole (150 mg once weekly) for 4-6 weeks has proved to be effective in the management of *tinea cruris* and *tinea corporis*, since 74% of patients achieved a clinical cure [99]. The advantages of this regime include a potentially better patient compliance and lower costs [100].

Currently, itraconazole may be given as a dose of 400 mg/day given as two daily doses of 200 mg for one week, whilst a few years ago the treatment regime was 100 mg daily for two weeks.

Tinea barbae

Beard infections require oral and topical treatment for four to six weeks. Either itraconazole (100 mg daily) or terbinafine (250 mg) may be used [92-98].

Tinea corporis

For localised lesions of *tinea corporis*, topical treatment may be used; for widespread or inflammatory lesions (kerion) an oral treatment is indicated.

Topical imidazoles appeared to be highly effective, with cure rates of 80% [70,71,94,95]. Amorolfine and allylamines are another alternative [70,71,92,93]. The oral agent of first choice is griseofulvin (10 mg/kg/day) for four weeks [70,71]. Itraconazole and oral terbinafine or fluconazole may be reasonable oral alternatives given for 4-6 weeks [70,71,96,97,99,100]. In endemic areas or when the index case is a pet, reinfection may occur.

Tinea pedis

Treatment of *tinea pedis* varies depending upon the type and severity of the infection. Careful drying of the feet is also important. Occlusive footwear should be avoided and absorbent socks should be used. The patient should be advised never to go barefoot in public showers, bathing facilities, locker rooms, etc.

Acute and chronic interdigital forms may be treated topically with imidazoles that have the advantage of being active also against resident gram positive bacteria that may cause secondary infections [101]. Imidazoles have to be applied daily for 3-6 weeks [93,95]. When gram negative bacteria are involved in *tinea pedis*, the use of topical imidazoles is generally ineffective [102]. In this case it is advisable to use antiseptics with a drying effect such as potassium permanganate solution or 20-30% aluminium chloride solution twice a day. In case there is microbiological evidence of bacterial cellulitis, an oral antibiotic should be administered. The allylamines (terbinafine and butenafine) may be used topically for shorter periods of time [36,37,39,103].

It is of interest that systemic therapy of interdigital *tinea pedis* with griseofulvin and ketoconazole is extremely disappointing because the mycological cure rate is low and recurrence of infection is common [104,105]. Oral terbinafine (250 mg/day) or itraconazole (100 mg/day) used for two weeks may improve cure rates up to approximately 70% [106].

The problem of *tinea pedis interdigitalis* is that the rate of recurrence is extremely high, particularly in cases with *T. rubrum*. Antifungal powders may be used prophylactically in warm or humid weather.

Plantar or moccasin-type *tinea pedis* is a chronic “dry” type of dermatophyte infection, usually caused by *T. rubrum* [107]. Such infections require oral therapy. With griseofulvin long treatment periods are required and relapse rates are also high [107]. With triazoles and allylamines treatment duration has been reduced without compromising efficacy, and consequently has improved compliance of the patients. Hay et al. [108] have shown that two weeks treatment with terbinafine 250 mg/day is as effective as four weeks treatment with itraconazole 100 mg/day in patients with plantar *tinea pedis*.

Increasing the daily dose of oral itraconazole, Gupta et al. [109] have shown that 85% of patients achieved a clinical cure with 400 mg/day of itraconazole for a week. Another study of Tausch et al. [110] compared 400 mg/day of itraconazole for a week with terbinafine 250 mg/day for two weeks. There were no significant differences since 58% and 54% of patients were healed.

Over the last two years other choices for the treatment of this condition have been published. For instance, fluconazole administered for eight weeks with daily doses of 100 mg, produces good clinical results, although more clinical experience is warranted [111]. The problem again of dry type *tinea pedis* is the high relapse rate.

Vesicular forms of *tinea pedis* on the instep should be treated with both an oral and a topical antifungal agent. This form usually requires two weeks of oral treatment and topical medication for 4-6 weeks.

Tinea incognito

Oral therapy is indicated in dermatophyte infection modified by steroids (Figure 10). A weaker steroid than that originally used may be prescribed for two or three weeks in addition to oral antifungal treatment to avoid flare up.

Conclusions

At present the treatment of dermatophyte infections depends on a wide variety of topical and systemic compounds. For topical therapy numerous galenic forms are available, namely creams, tinctures, sprays, powders,
shampoos, ointments, lotions, nail paints and nail lacquers. The comparison of individual drugs is difficult, and almost 80% of dermatophyte infections will respond to one of the topical compounds, apart from, of course, tinea unguium. Few studies have compared the clinical activity of the different compounds and formulations in clinical trials. Topical treatments show a low incidence of adverse events. Often the choice of therapy is determined by the patients’ acceptance of a proposed treatment schedule: this will improve patients’ adherence to treatment.

The choice is smaller for systemic treatment of dermatophytosis: griseofulvin, itraconazole, terbinafine and fluconazole. Ketoconazole at present is not used due to its adverse effects when administered orally and a promising new drug is emerging: voriconazole.

Nowadays treatment schedules are shorter and easier, particularly with highly keratinophilic drugs such as itraconazole and terbinafine, that persist at therapeutic levels in skin and nails for a long time after therapy ends.

Reasons for failure are multiple and Table 10 shows several points the clinician must consider in coming to an adequate explanation. Clinical observation of each individual case is essential and mycological monitoring should be done before and after treatment.

Most published reports over the last two years on dermatophyte infections are papers on the use of itraconazole with the new formulation on cyclodextrin, treatment of onychomycosis with itraconazole, fluconazole and terbinafine and studies on the epidemiology and treatment of tinea capitis. At present the management of onychomycosis is a challenge for the clinician. However, historically, treatment results have actually improved when they are compared with those achieved with griseofulvin, but are far from being ideal. In patients with all their nails involved, the rate of cure is 40%-60% for itraconazole and terbinafine respectively; fluconazole needs longer treatment periods and has lower rate of clinical success. In almost all published reports long term assessment is lacking and hence the recurrence rate of onychomycosis is not known.

In the management of tinea capitis the gold standard is griseofulvin, which is cheaper and has a favourable safety profile. It has a drawback: in some countries, as for instance in Spain, it is not available as a liquid formulation. Currently itraconazole is the choice for the treatment of M. canis tinea capitis unresponsive to griseofulvin or in patients with intolerance to the latter. Terbinafine is more expensive than griseofulvin and with the treatment schedule provided by the manufactures does not seem to be active for the management of M. canis tinea capitis.

The management of dermatophyte infections either in patients with AIDS or immunosuppression is still a challenge.

Table 10. Possible reasons of treatment failures.

<table>
<thead>
<tr>
<th>Topical treatment</th>
<th>Oral treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorrect diagnosis of dermatophytosis. KOH and cultures are always necessary.</td>
<td>Incorrect diagnosis of dermatophytosis. KOH and cultures are always necessary.</td>
</tr>
<tr>
<td>The patient has not applied properly the topical treatment, or for the time prescribed (lack of compliance).</td>
<td>Has the patient been taking the oral treatment as prescribed by the doctor?</td>
</tr>
<tr>
<td>Is the topical indication correct?</td>
<td>Is the patient taking any competitive drug, or is the patient not absorbing adequately the antifungal?</td>
</tr>
<tr>
<td></td>
<td>Is concomitant bacterial infection likely?</td>
</tr>
<tr>
<td></td>
<td>Is there any underlying skin disease? (lichen, psoriasis, etc...)</td>
</tr>
<tr>
<td></td>
<td>Is reinfection likely to occur?</td>
</tr>
</tbody>
</table>

Figure 10. Ringworm modified by steroids (tinea incognito).
References
